By: Kathryn Mayer | August 10, 2020
When COVID-19 first appeared in January, Jo Deal, director of human resources for software company LogMeIn, began meeting daily with the company’s CEO and general counsel about the situation. Her original questions were logistical and scenario-based: Do we let people travel? What about employees returning from a conference?
Things progressed rapidly as the number of cases increased and the World Health Organization declared COVID-19 a pandemic in March. When that happened, Deal began meeting with the CEO and the general counsel about the looming crisis three or four times a day.
“Things were moving very fast at the time,” he says. “We still meet daily, although many months later.”
Although the first conversations revolved around logistics (for example, which employees would work from home and what was the best way to move workers remotely, for example), the questions quickly evolved to more personal matters: How do we help to the employees? How do you feel? What can we do?
“We talk a lot about flexibility and empathy and we work with our leaders to train them to try to meet people where they are,” says Deal. “And really, every day, it just survives.”
Months after the coronavirus pandemic, HR leaders have been a clear and resonant voice for their companies. They are important partners for C-suite executives, leading the way in initiatives such as relocating workers to remote locations and rethinking benefit offerings.
“HR is playing the role it has always played, but it is playing it exponentially,” says Jill Smart, president of the National Academy of Human Resources and former CHRO of consulting giant Accenture. “And because they are doing so well, I think the HR profession will come out of this [stronger] because they are going to play a key role.”
The pandemic has given HR executives elevated key roles in their organizations and a prominent voice amid the turmoil, but they have also become an important source on how to treat employees, carry on the culture, and lead. the road at a time when employees are collectively experiencing more shock in their personal and professional lives than ever before.
The role of HR leaders in organizations has historically been organization-centric: maintaining compliance, mitigating risk, enforcing policies. Employees traditionally are not comfortable with human resource leaders.
Many CHROs insist that seasoned HR leaders have long walked the line between being the ally of the employees and the organization. But they also recognize that a triple threat of crisis – the pandemic, social unrest and the ensuing economic upheaval – is driving them to focus more on employees than ever before. They focus on connection, empathy and the mental health of employees. And it’s sink or swim time for HR leaders who haven’t prioritized employee wellness in the past.
It may be evident that data analysis has become a buzz phrase. From human resources to supply chain management, from marketing to finance, analytics has become a key tool in these business decisions. Businesses today know that without this understanding of data, they will be left behind.
Data analytics enables companies to arm themselves with data to reduce costs, increase sales, and streamline operations. They can also use analytics to predict future events. While previously executive decision making may have been based on instinct or tradition, today they ask themselves: “What do the numbers tell us?”
From this question, the data can tell companies a little bit about their customers and operations. Analytics can indicate how many calls a salesperson has to make before getting an interested prospect to review services or if a certain product could take off in a few months. But Analytics is useless if the data quality is poor.
The challenges of data-driven companies
Businesses are benefiting from data-driven decision making, but there is a steep learning curve. Struggling with large volumes of data, coming from multiple data silos and in different formats, is challenging. The ability to handle large amounts of information, integrate it from different areas of the company and combine it to obtain actionable data in real time is easier said than done.
One of the main challenges is data quality: Without high quality decision making is likely to fail. As with any data-dependent process, decision-making depends on the quality of the information. As the saying goes, “trash comes in, trash comes out.” Incorrect or incomplete information will lead to incorrect predictions and misleading descriptions.
Where do data quality problems originate? One of the problems concerns the initial assumptions on which an analytical model is built. In marketing, predictive models could apply to next year’s marketing budget. You could try to make marketing expenses more efficient by analyzing customers in new groups: those who are going to buy, regardless of advertising; those who will buy only after seeing compelling advertising; and those who will not buy. The idea is to spend resources only in that middle group because the other two are a waste of money.
But what if the customer profiles in these other groups is not correct? What if the demographic definition of a customer’s “going to buy anyway” category is based on misinformation, such as brand loyalty that ignores competitive technology? A mistake like this can ruin a marketing campaign, no matter the quality of the predictive analytics.
What is the solution? Test all hypotheses before incorporating it into the model. Be sure to get in, because even the business truths that are taken for granted could be off base.
Do we sign up?
The example above involves an error at the front end while building the model. But another significant mistake often occurs at the end of the process: failure to perform an autopsy on the results of a predictive model. In the example I just presented, a more effective marketing campaign could come out of the rough numbers: sales improved, while marketing spent less.
But it is not that simple. Measurable improvement is all well and good, but success in analysis is measured by the amount of an improved process compared to potential success. One number going up while another goes down actually says one thing: that a process is moving in the right direction. If left at that, the company cannot yet assess the effectiveness of the analysis process.
What’s missing? First, specific goals should define the modeling process: optimal sales goals that can be compared to sales, for example. Having those numbers makes it possible to make the analysis process a success, not only against past performance, but against future potential.
So, for example, if a food distributor wants to increase sales by 8% over the next year, they first have to look at their current sales number and compare that number to past growth, for example, five years. to see if this objective prediction has merit.
With this type of thinking in place, analysis can improve a process today, with the potential to continually improve, fine-tuning not only the results, but the quality of inputs to the process.
Archives
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- January 2024
- November 2023
- October 2023
- September 2023
- August 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- January 2022
- December 2021
- November 2021
- September 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- December 2017